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This report is one of a series of Bushfire Science Reports prepared by
the Bushfire Recovery Project (see www.bushfirefacts.org ). The
reports aim to present the latest evidence from the peer-reviewed
scientific literature about bushfires, climate change and the native
forests of southern and eastern Australia. 

Reports in the Bushfire Science series are: 
 
No. 1 How does climate affect bushfire risks in the native forests of
south-eastern Australia?

No. 2 How do the native forests of south-eastern Australia survive
bushfires?
 
No. 3 What are the relationships between native forest logging and
bushfires? 

No. 4 What are the ecological consequences of post-fire logging in
the native forests of south-eastern Australia? 

No. 5 What is the role of prescribed burning of native forests in
reducing the risk of infrastructure loss to bushfires? 



The catastrophic impacts of the 2019-2020 mega-fires of eastern and
southern Australia received extensive media coverage, with smoke
blanketing the major cities of the east coast and surrounding regions
for months. Many people seeing the stark images of blackened forest
landscapes thought these environments were “completely destroyed”
by the bushfires. Here we assess the published peer-reviewed
scientific literature to address five related questions: 

1. Are bushfires a natural part of the Australian forest environment? 
 

2. How do forests persist in the face of recurrent bushfires? 

3. How do animals and fire sensitive ecosystems persist in fire-
    prone landscapes? 

4. Are bushfires ecologically destructive? 

5. How do bushfires interact with other disturbances?
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INTRODUCTION



Fire has exerted a selective force on Australian vegetation for at

least 60 million years. Australia’s plants and animals are therefore

well adapted to “fire regimes”, i.e., the typical patterns of fires

occurring in a landscape. 

Most of the plants in the eucalypt forests of southern Australia

have traits that enable them to tolerate infrequent, high intensity

fires and recurrent low to moderate intensity fires. The two main

fire response strategies are resprouting and seeding. 

Most of the eucalypt forests are dominated by tree species that

can recover quickly after bushfire by resprouting, providing

structural and ecological stability to the forests.

Some eucalypt forests are dominated by tree species that

respond to crown scorch by releasing seeds. These seeder trees

need long fire-free periods in which to grow and mature. 

The survival and recovery of many animal populations depends

on unburnt patches.

Fire regimes are expected to change as a consequence of climate

change. Altered fire regimes, including increasing frequency and

intensity of fires, can change the composition and structure of

forest ecosystems. 

The persistence of rainforest patches within the fire-prone

landscapes of southern Australia is at risk and in need of special

management interventions.
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KEY  POINTS



1 .Are  bushfires  a  natural  part  of  the
Australian  forest  environment?

Fire has been an intrinsic part of the environment globally through
much of terrestrial plant evolution [1-4]. As combustion can occur
when oxygen levels in the atmosphere exceed 13%, the variation in
atmospheric oxygen levels throughout Earth’s history correlates with
the presence of fire activity [2]. Fire influences vegetation distribution
]and structure, the carbon cycle, and climate [2,3].

Fire has exerted a selective force on Australian vegetation for at least
60 million years [5,6]. Although there is a long evolutionary history of
fire, Australia’s plants and animals are more accurately described as
being adapted to fire regimes rather than fire adapted [1,7]. A “fire
regime” is described by: the type of fire (i.e., crown, surface or below
ground), and the typical fire intensity, seasonality and frequency of
fire experienced at a given location. Fire intensity is defined as the
amount of energy released from a fire over a period of time in a given
area, whereas fire severity is defined as the impact that a fire has on
vegetation [8]. The interval between consecutive fires is particularly
important ecologically and influences the rates of growth,
reproduction and mortality of both plant and animal species [9].
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Australia has over 70 million hectares of native forests and woodlands (Figure
1). The plant genus Eucalyptus is extremely prevalent in much of the woody
vegetation of Australia and includes over 800 species [12,13]. A eucalypt is
any species within the genus Eucalyptus or the closely related genera Corymbia
and Angophora. Eucalypts dominate the forests and woodlands of the coastal
regions of Australia and vast areas of its drier inland regions. Here we use the
term eucalypt forest to include all vegetation formations that are dominated
by trees in the genera Eucalyptus, Corymbia or Angophora. This includes the
wet eucalypt forest (also referred to as wet sclerophyll forest, or tall-open
forest), eucalypt forest (also referred to as dry sclerophyll forest, and open
forest) and their various understorey formations including grassy and
shrubby understoreys. Most woodlands in Australia are also dominated by
eucalypts. We use the term rainforest to include closed forests that are
dominated by genera other than Eucalyptus.
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 Figure 1 Forests and woodlands together cover 70,655,650 hectares of Australia. This is a
huge area but still less than 10% of the land area. Of this, 4.7% is rainforest, 5.4% is wet eucalypt
forest, 24.7% is eucalypt forest and 37.4% is eucalypt woodland. The remaining 27.8% is all
other kinds of forest and woodland including Acacia, Callitris, Casuarina and Melaleuca
forests and woodlands. Note that our data are from a combination of the National Vegetation
Information System (NVIS)[10] and the global forest change dataset in which forests are
defined as < 5 metres tall [11].
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2 .  How  do  eucalypt  forests  persist  in
the  face  of  recurrent  bushfires?

In spite of the stark imagery of blackened landscapes, and contrary to media
reports, the ecological reality is that eucalypt forests are not “destroyed” by
bushfire [14]. Plants have a range of traits that enable them to persist in the
face of recurrent fire. These can be grouped into two main response
strategies (1) resprouters; and (2) seeders [7,15].
 
Resprouters
Resprouting is the initiation of new shoots from recovery buds after fire
(Figure 2). Above-ground recovery buds are protected by thick or insulating
bark [16] (Figure 2). Resprouting from above-ground recovery buds on stems
and branches is referred to as epicormic resprouting. Many resprouting
species have their recovery buds located underground where they are
insulated by the soil, e.g., lignotubers in many Eucalyptus spp; bulbs, corms
and tubers (in orchids and lilies); and rhizomes (in ferns and reeds) [16].
These are referred to as basal resprouters [13]. Palms, cycads, grass trees and
tree-ferns can resprout from buds located at the top of a plant that have been
protected from the heat of fire by compact leaf bases [7,15,17]. These are
called apical resprouters.

Figure 2 Forms of resprouting (a) epicormic sprouts emerging from the charred
trunk of a Swamp Mahogany; (b) Swamp Fern resprouting from rhizomes following
fire; and (c) apical resprouting in a Cabbage Palm. 



Once they are mature, resprouters can survive fire by protecting
recovery buds, although it may take many years before they develop
fire resistant structures such as lignotubers, thick bark and protective
leaf bases [16], or sufficient height to avoid exposure to intense heat
[18]. Resprouting is stimulated when the vegetation canopy is
removed [19]. Stored carbohydrate reserves, which are often below
ground, enable resprouters to initiate growth almost immediately
after the passage of a bushfire [20]. Satellite imagery of eucalypt
forests dominated by epicormic resprouters in the Sydney Basin has
shown that the canopy can recover substantially within two years of a
bushfire [21]. Rapid canopy recovery following fire provides critical
food and shelter resources for recovering fauna populations [22]. For
example, koalas migrating into a burnt forest from an unburnt forest
can live entirely off a newly developing canopy within months of a
fire [23]. 

Nearly all eucalypts can recover from bushfire by resprouting despite
having all of their canopy scorched [24], but eucalypts are not the
only resprouters. Many non-eucalypt forest plants also can resprout,
with 70% of the plant species in eucalypt forests having the ability to
resprout following fire (Table 1) [17]. The eucalypts are conspicuous,
however, in their ability to resprout epicormically following crown
fire [13]. Resprouter tree species within the genera Eucalyptus,
Corymbia and Angophora physically dominate the eucalypt forests and
woodlands of southern Australia [17].
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Figure 3 Epicormic resprouting following bushfire 



Where the typical fire regime is recurrent low to moderate intensity
surface fires, resprouters are advantaged [17,25,26]. Resprouters can
occupy the same site for hundreds to thousands of years with minimal
changes in population size [27,28]. The longevity and physical
dominance of epicormic resprouters confers a high degree of
structural and functional stability to eucalypt forests in response to
both drought and fire. In terms of forest structure, regrowth from the
ground level is not required because the vegetation canopy can
recover from above-ground recovery buds. The ability to resprout
also enables temperate eucalypt forests to function as robust carbon
sinks [29].

Table 1. Proportions of fire responses and resprouting types among Australian
vegetation communities (values are rounded) from Clarke et al [17]. Obligate seeders
are unable to reproduce by resprouting. Facultative resprouters are also capable of
seeding.
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Seeders
In contrast to resprouters, seeders are killed by total canopy scorch. Seeders
are able to  persist in fire-prone landscapes because they have the ability to
produce a fire-resistant seed bank that germinates profusely after fire [15].
One seeder mechanism is to retain seeds in woody capsules that protect the
seed and hold it in a dormant condition until stimulated to open by fire [18]. 



Examples of this mechanism are found in species of Banksia, Hakea,
Leptospermum and Callistemon [16]. Another strategy, common amongst Acacia
species (wattles), is to produce hard seeds that are stored in the soil and
stimulated to germinate when heated by fire [7].

In the case of obligate seeders, fire is needed for regeneration i.e., seeding is
their only post-fire strategy. Bushfire provides the cue for seed release and
germination, while simultaneously reducing competition for light, water and
nutrients and creating the open space necessary for slow growing seedlings to
survive [30]. In eucalypt forests, 27% of species are obligate seeders [17], and
most of these have a shrub growth form. For these species, the length of time
between consecutive fires is important. If the time between fires is too long,
there are few opportunities to release seed. Conversely, if the interval
between fires is too short, and plants have not had the opportunity to mature
and produce seed, then local extinction can occur [16].

Ten species of obligate seeders can grow into tall trees (25–100+ m) in the wet
eucalypt forests of eastern Australia [28]. Normally, these species are co-
dominant with resprouters [17] but striking exceptions to this are the forests
dominated by ash-type eucalypts. Across Victoria, the ash forest area, which
is dominated by obligate seeders, was mapped in 2013 and found to be
approximately 547,000 ha or 7% of Victoria’s total forest area [31]. High
severity fire can cause high mortality of canopy trees in these forests, and the
resulting germination event produces even-aged stands. However, spatial
variation in fire severity, topography, severity of the preceding fire and the
length of time since the previous fire can all alter the mortality rate and
contribute to the development of multi-aged forest stands [32] with up to
four age classes present in an ash forest [33]. Multi-agedness can therefore be
quite prevalent, even in forests dominated by obligate seeder trees.

The fire response classifications (resprouters and seeders) are potential
responses and are not true of all individuals all the time. How an individual
plant responds to a given fire depends on the developmental stage and
vigour of the plant, the fire severity, the interval between fires, the season of
burning, microhabitat differences and seasonal conditions [7,16,34,35]. For
example, lignotubers need time to develop or replenish sufficient
carbohydrate reserves to support resprouting and if exposed to fire too soon
or too often, individual plants may lose the ability to resprout, and die [36].
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3 .  How  do  animals  and  fire  sensitive
ecosystems  persist  in  fire-prone
landscapes?

Fire-prone ecosystems dominate the vegetation cover over most of
the Australian continent [17]. The persistence of many plant and
animal species within fire-prone landscapes often depends on fire
refuges [37]. Each fire creates a mosaic of intensities that leaves some
areas unburnt and burns the vegetation in other areas entirely [20].
The size and location of unburnt areas varies from one fire to another
[38]. Fire weather and drought are the main drivers of the occurrence
of unburnt patches. When fire weather is moderate, there are more
unburnt patches than when fire weather is severe [39]. Under severe
fire weather, unburnt patches may make up as little as 1% of the total
burnt area [39,40].

Echidna emerging after fires pass through Murramarang National Park, New South Wales. 
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Animals
The likelihood of individual animals surviving a fire is strongly dependent
on the fire intensity. This is particularly the case for animals that live in the
vegetation canopy. In the case of low intensity fires, large mammals such as
wallabies can move through a fire front [41]. However, finding refuge, either
in a habitat feature that provides protection from heat and flames or in an
unburnt patch of forest, is the main strategy for many animals to survive the
passage of a fire [23,42-45]. 

Relatively large unburnt patches can occur in topographically sheltered
gullies and other landscape locations where conditions are wetter and cooler
than the surrounding landscape [40,46,47]. These are important refuges
during fire for mammals and birds [48-50]. However, a fire refuge can be any
feature that enables the survival of individuals in the face of an event that
would otherwise result in mortality. Depending on the intensity and duration
of the fire, small animals may be able to survive the fire in situ by sheltering
in drainage lines, under rocks, underneath bark, in hollow logs, in tree
hollows, within compacted leaf bases or in burrows [45,51,52]. A range of
animal species have been recorded in wombat burrows and there are
anecdotal reports of animals sheltering in wombat burrows during fire. 

Low intensity fires that are small and patchy might give many individual
animals the opportunity to avoid being killed [18,53]. However, when fires
are large and intense, high mortality rates can be expected for most species.
Whether animals are able to access refuge from fire will depend on the
species’ size, biology and mobility; their geographic distribution in relation
to potential fire refuges; and where individuals are at the time of a fire.
Burrowing animals have a better chance of surviving a bushfire than animals
which do not make or use burrows [54]. However, having survived the
passage of a bushfire, many more individuals will be lost due to dehydration,
predation, or starvation in the altered post-fire environment [18,43,55].

In the weeks, months and years after the passage of a bushfire, the spatial
pattern and rate of recovery of populations will be unique for each species
and will depend on the spatial distribution of individuals and populations
that survived the fire in situ; each species’ life history attributes [56]; and the
changing availability of plant-based resources including food and shelter
[51,53,57,58]. It may take more than 100 years for key habitat resources to re-
develop [59].
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For many species, their population recovery will be driven by individuals
surviving in unburnt areas [23,57,60]. Unburnt areas within the fire
perimeter are important for the recovery of in situ populations [42,44,45,61].
Large unburnt areas outside the fire perimeter are also important, as
colonisation from ex situ populations can be significant for post-fire recovery
of fauna [61,62]. Gullies, and the key habitat resources that they protect, may
be key to the survival and resilience of many fauna species [37,63-65].
Unburnt patches are important for the persistence of fire sensitive species
across forested landscapes globally [39]. Irrespective of their function as fire
refugia, locations where nutrients and moisture accumulate are also critical
to the persistence of many animals in the Australian landscape [66]. 

The persistence of plants and animals depends on many factors of which the
fire regime is just one. Other factors that determine a species' ability to
persist at a location include: matching niche requirements [67]; life history
attributes such as means of reproduction [68] and dispersal ability [69-71];
climatic and weather conditions between fires [35,72]; landscape connectivity
[73,74] and species interactions including competition and predation [22,63].
Interactions between these factors mean that a species’ response to fire can
vary between populations, between sites and between fires. Over time, the
composition of the community (i.e., which species are part of the ecosystem),
and the community structure will depend on the outcomes of these
interactions [9]. 
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Green refugia in the Yarra Ranges National Park after 2009 'Black Saturday' fires,
Victoria.



Fire sensitive ecosystems
Rainforests are distributed as an archipelago of patches of varying size
among the widespread and dominant eucalypt forests of eastern and
southern Australia. Relatively large intact blocks of rainforest remain in
south-eastern Queensland, northern and central coastal New South Wales
and Tasmania. Patches naturally decline in size in southern New South Wales
and Victoria where rainforest occurs as many small discrete patches in
sheltered locations (Figure 4).
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Figure 4 The distribution of rainforest vegetation in eastern Australia showing its
occurrence as many small, discrete remnants in (a) south-eastern Queensland, (b)
northern coastal New South Wales, (c) southern coastal New South Wales and (d)
enlargement of section of southern coastal New South Wales.



The persistence of rainforests within the largely fire-prone landscapes of
Australia, both in larger intact blocks and the small patches, is a remarkable
feature of forest ecology in Australia. The evolution of these rainforests pre-
dates Australia’s eucalypt forests and they are refuges to many plant and
animal species with ancient origins in Gondwanaland [75]. A high proportion
of rainforest plant species have some capacity to resprout but they are
mostly basal resprouters and require long fire free intervals to recover the
ability to reproduce. They are therefore unable to persist in locations where
there is recurrent fire [76]. Their persistence within fire-prone landscapes is
maintained by multiple interacting factors including climatic conditions,
topography, soils, moisture and fire history [40,46,47,76-78]. 

For larger rainforest patches, vegetation “feedbacks” are involved whereby
the rainforest canopy maintains a humid, cool, shady microclimate which
makes these forests less fire-prone [76,77,79]. Animal activity, such as
foraging in the leaf litter layer by the Superb Lyrebird, also can modify fuel
characteristics and further reduce the likelihood of burning [37,80-82]. These
conditions favour plant species that are less flammable than adjacent
eucalypt dominated vegetation. For smaller rainforest patches, topographic
sheltering creates gullies where conditions are wetter and cooler than the
surrounding landscape, providing protection from most fires [40,47].

As long as fire weather conditions are not severe, non-flammable rainforest
vegetation can suppress fire [77,79]. When low intensity fire reaches
rainforest, the changes in microclimate and fuel characteristics are often
sufficient to prevent the fire from spreading, although repeated fires cause
steady attrition of the forest boundary [46]. However, gullies are not immune
to burning, and after prolonged and severe drought the capacity of rainforest
stands in normally damp gullies to extinguish fire is greatly reduced [39]. 

As we discuss in Report No. 1 of this Bushfire Science Report series (see
www.bushfirefacts.org), there are observed and projected increases in
extreme fire weather conditions as evidenced by the unprecedented 2019-
2020 mega-fires. Increased severity of fire weather and increased drought
conditions are likely to lead to a reduction of fire refugia across the forests of
southern Australia. Intervention to protect topographic areas that able to
support fire refugia will be an important step towards maintaining the
ecological integrity of forests under future climate change [39].
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From an ecological perspective, bushfires are not completely destructive.
Bushfires, including those of high severity, are one form of ecological
disturbance that has an important role in maintaining biodiversity within the
eucalypt forests of southern Australia [14]. Bushfires provide an important
cue for regeneration of many plant species and have a structuring role in
plant communities in fire-prone environments [9,16]. As outlined above, it is
the fire regime, rather than a single fire event, that is important for forest
ecology. Over time, fire regimes have helped to shape plant characteristics
and the composition and structure of Australia’s forests. However, large
bushfires that burn the entire geographic area occupied by a species are
clearly a threat to fauna. In  addition, inappropriate fire regimes can cause
population declines or local extinction even in species with traits that give
them the potential to survive fire [16]. 

Inappropriate fire regimes include fires that are too intense, not intense
enough, too frequent or too infrequent. As noted above, the climate is
changing rapidly, extreme fire weather conditions are increasing and fire
regimes are projected to change [83,84]. One aspect of changing fire regimes
that has particular ecological significance, is the frequency of fires, especially
the length of time between two consecutive fires at a given location. 

Fire frequency is a key driver of vegetation composition and structure
because of the effects of fire in relation to plant life cycles [16,85]. Forests
dominated by obligate seeder tree species such as Mountain Ash and Alpine
Ash provide a striking example. In these ecosystems, fire  stimulates the
release of canopy-stored seed and regeneration of a new cohort of trees [33].
However, if the next fire occurs before trees have become reproductive (<20
years), or after seed is no longer produced (>350 - 500 years), then
demographic collapse can occur [86]. Increasing fire frequency poses the risk
of demographic collapse of Mountain Ash forests and Alpine forests [87-89].
In recent years, two fires in rapid succession have caused complete
regeneration failure in large stands of Alpine Ash in the Australian Alps [88]. 

High fire frequency also can be a problem for resprouter species that are
normally considered to be fire tolerant, including the trees that dominate
Australia’s eucalypt forests. 
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4 .  Are  bushfires  ecologically
destructive?



As resprouters have long juvenile periods, high fire frequency can change
stand structure in forests dominated by resprouters by killing juvenile plants,
reducing the capacity of established trees to produce seed, and exhausting
the capacity of mature trees to vegetatively recover [36,90].

Conversely, if fires are too infrequent to stimulate the production or release
of seeds, plants may die without reproducing [30]. Exclusion of fire from
open eucalypt forests can result in the competitive exclusion of shade
intolerant species [91]. 

A single high intensity fire can cause long term changes in plant community
composition and structure, even in ecosystems that are tolerant of low to
moderate fires. In some vegetation communities, a single high severity fire
can cause population collapse of species less tolerant of fire [92]. A single
high intensity fire can cause local extinction of seeder species that are
normally fire tolerant, and high mortality rates of resprouting species which
would normally have high resistance to fire [90,93-95]. In the Karri forests of
Western Australia, for example, a single large and intense bushfire in 2015
caused almost twice as much mortality of Karri trees and complete
elimination of a normally dominant shrub species compared to sites where
the bushfire was less intense [95].

Frequent high intensity fire has the potential to cause transitions to more
open, simplified forest structure even in systems dominated by resprouters
[96-98]. The combined impacts of more frequent fire and warmer, drier
conditions can lead to reduced rates of recruitment, growth and survival of
woody plants and changes in vegetation composition and structure [35,99].
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The Alps, New South Wales. 



The mega-fires of 2019-2020 were unprecedented in their spatial extent and
severity [100]. Furthermore, these bushfires were superimposed on
ecosystems and wildlife populations already under significant stress from
multiple pressures including: direct impacts of climate change, clearing and
fragmentation of native ecosystems, invasive species, predation by exotic
pests, habitat degradation, overexploitation of natural resources such as
timber and water, disease and pollution [101-105]. For example, extreme
temperatures associated with climate change are causing mass mortality of
flying foxes, a key species for pollination in eucalypt forests [106]. The
combined impacts of land clearing and drought have also caused significant
declines in the distribution and population of koalas [107]. The 2019-2020
mega-fires may have exacerbated the situation by abruptly and severely
reducing population sizes and rendering habitat unsuitable for many years
[108].
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5 .  How  do  bushfires  interact  with
other   disturbances?



The ecosystem-level consequences of multiple different and compounding
human and natural disturbances are unpredictable [109]. We know, however,
that interacting disturbances can have profound effects on biodiversity and
ecosystem properties, especially those related to ecological maturity [110].
While our understanding of the ecological effects of interacting disturbances
is far from complete, there are many specific examples of effects. For
example, habitat fragmentation prevents re-colonisation of burnt areas by
fauna that have survived fire in unburnt areas, especially of species with poor
dispersal ability [111]. Feral cats are able to hunt more effectively in a post-
fire landscape where shelter for surviving wildlife has been removed by fire
[112]. Some species within the plant family Myrtaceae, including resprouting
species of Eucalyptus and Angophora, are more vulnerable to infection by the
invasive pathogen myrtle rust following fire [113]. Feral herbivores can also
affect plant recovery following fire [111]. Interactions between changed fire
regimes, invasive species and changing land use have contributed to
significant declines in Australian mammals and birds and presumably other
animal and plant groups [103]. 

The 2019-2020 mega-fires were beyond anything that had been anticipated
in conservation planning and management for biodiversity [111]. The fires
urnt much of the conservation network including habitat for 832 native
vertebrate species (378 birds, 254 reptiles, 102 frogs, 83 mammals, and 15
freshwater fish) [108], and were of a scale that had not been factored into
recovery plans for threatened species [111]. The fires overlapped with the
habitat of 107 threatened vertebrate taxa. Seventy species had more than 30%
of their habitat burnt, and of these, 21 species were already listed as
threatened with extinction [108].

Many species that were not previously considered to be threatened, also
suffered significant losses. Initial assessments have identified 119 animal
species as high priority for urgent management attention comprising 17 bird,
20 mammal, 23 reptile, 16 frog, 22 crayfish, 16 freshwater fish species and 5
invertebrate species [114]. Data are particularly lacking for invertebrates, but
191 invertebrate species are known or assumed to have been severely affected
by the 2019-20 mega-fires [115]. For invertebrates, to date only butterflies,
land snails, beetles and flies have been assessed and numbers are likely to be
much higher when a more complete analysis can be completed that includes
moths, spiders, crickets and other groups. As many as 709 plant species are at
high risk and in urgent need of management intervention as a result of the
2019-20 mega-fires [116].
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The eucalypt forests of southern Australia are resilient to disturbance
by bushfire. Nearly all eucalypts and many non-eucalypt forest plants
can recover from bushfire by resprouting, with 70% of the plant
species in eucalypt forests having the ability to resprout following
bushfire. However, the combined impacts of high intensity large-scale
bushfire with multiple other pressures mean that we should not be
complacent about forest recovery. 

In the short term, the best chance for forest recovery combines a
number of strategies that: (1) allow natural forest regeneration
processes to take place; (2) do not disturb burnt areas any further (see
also Report No. 4 of this Bushfire Fact series (www.bushfirefacts.org);
(3) reassess the extinction risk of fire-impacted species; (4) assist the
recovery of fauna populations in both burnt and unburnt areas; and
(5) address the multiple threats to native animal populations wherever
they pose a barrier to recovery. The range of recovery actions
required is broad and needs to be informed by each species’
sensitivity to fire and the suite of threatening processes that affect it.
 
In the longer term, significant investment in the conservation and
recovery of Australia’s ecosystems is needed to increase the resilience
of native plant and animal populations. In relation to fire, there is a
need for improved protection, planning and response to ensure the
retention of unburnt patches, particularly topographically sheltered
gullies that are critical to the survival and subsequent population
recovery of the biota in fire-prone landscapes. Improved protection,
fire planning and fire response are also needed for fire sensitive, key
biodiversity areas such as the Gondwana Rainforests [117].
Importantly, urgent action on climate change mitigation is needed to
reduce further global warming and ongoing increases in extreme fire
weather conditions, and to help avoid repeated events of this type.
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CONCLUSION
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